Game Audio via OpenAL: Extras

Summary

In the previous Sound tutorial, you learnt the basics of OpenAL, and implemented a useable audio
system that extended your basic game engine with an emitter class that could play sound. This time
around, you'll be introduced to the concept of streaming sounds, via implementing the ability to play
the popular ogg vorbis audio format. You’'ll also see how to extend the sound system to support
‘triggered’ sounds - handy for GUI output and ’one time only’ sounds caused by in-game events.

New Concepts

Triggering sounds, sounds without 3D positioning, streaming sounds, multiple sound buffers, Ogg
Vorbis files

Introduction

Our SoundSystem is already pretty good, and is capable of playing many different sounds in a reliable
way. We can still make it better, though, so to round off this tutorial series, we're going to look at
triggering global audio, and streaming audio files too large to fit in memory.

Triggering Audio & Global Audio

As our SoundSystem class currently stands, it can play audio samples in 3D space via OpenAL and
a special SoundEmitter class. That’s an incredibly powerful tool that will allow a wide variety of
soundscapes to be created, but there’s a slight hole in our audio playback capabilities. What about
the audio feedback from a graphical user interface? It’s common for the buttons in games to make a
noise when highlighted or clicked, and some games have video clips with audio as cutscenes between
levels. These are examples of global audio - sound that we don’t want to be processed in 3D space, but
to instead just be sent to the speakers as-is. With the way our sound system is currently implemented,
we’d need to create a new GameEntity for each of these, and we’d have to keep track of them and
delete them as necessary in our gameplay logic. We also have another problem - where do we place
them in space? How audio is played back is determined by the sound emitter’s position in relation to
the listener, but sounds caused by GUI elements we really want to be ’global’ sounds, always audible,
no matter where the player is in the world.

The ideal solution to how to deal with these triggered types of one-off sound events is to extend
the SoundSystem to support basic playback of samples without having to send it a new SoundEmit-
ter. That might sound slightly backwards given how powerful the ability to control sounds with a
GameFEntity is, but sometimes in our games, we just want to trigger the playback of a sound, and not
really care about it afterwards. By adding simple functions to the SoundSystem to automate the trig-
gered playback of sounds, it becomes much easier to playback audio, whatever the situation. Having
separate functions for one-off sounds in 3D space, and global sounds, allows you to hide the actual
implementation of how the sound is played back or made global - differing sound APIs will handle
global audio playback in different ways, and relying on external-API specific knowledge throughout
your game’s code is a bad idea - much better to just let the SoundSystem deal with it. In the tutorial
code, you’ll see how to support such triggered audio with the minimum of additional code, allowing



the flexibility of 3D GameEntity-derived sound, and the simplicity of being able to trigger in-game
sounds without having to keep track of lots of temporary entities in your gameplay code.

Compressed Audio

In the previous tutorial, we looked at how audio data is encoded via Pulse Code Modulation, and loaded
in some uncompressed audio data from a WAV file. Of course, WAV is not the only audio file format out
there, there are compressed formats, too - such as the ubiquitous MP3 file format. These compressed
sound formats may use the same compression techniques used in file archiving formats like ZIP and
RAR at some point in their compression algorithm, such as run length encoding (shortening repeating
bytes to a single byte and an occurrence multiplier) and Huffman coding (building up ’dictionaries’
of frequently occurring byte sequences and assigning them short identifier sequences), but will also
usually include compression techniques specifically developed to analyse and compress the waveform
data of sound. The most common of these is the discrete Fourier transform - Fourier transforms turn
complex waves into the sum of simpler waves defined by sines and cosines, while discrete transforms
do so on discrete 'separate’ data such as the digital PCM information. These Fourier transforms can
become quite costly, but algorithms known as fast Fourier transforms exist that are much quicker, and
it is these that are use when encoding and decoding compressed audio data. The audio hardware in
your mobile phones and MP3 players most likely contains a hardware implementation of such a fast
Fourier transform, allowing the efficient, real-time decoding of your favourite music tracks.

Ogg Vorbis

The process of decoding a compressed audio file is generally quite computationally expensive, and
writing a loader for such a format, as you did for WAV files, would be too complicated, and likely to
be error prone. Instead, external libraries are often employed to handle the actual extraction of PCM
data from a compressed file format. The choice of compressed audio to support in an application
therefore comes down to the availability of these libraries, and how liberal their license is - some will
be free, while some will require some sort of payment, or even royalties on every copy sold.

The MP3 file format falls into this latter category (for commercial software selling over 100,000
units, anyway), so free audio compression libraries are often used instead. One of the most popular
free alternatives to MP3 is the Ogg Vorbis file format, handled by the Xiph.Org Foundation. Strictly
speaking, Ogg is only the container format, with Vorbis being the name of the specific compression
technique used to fill the container, but due to such compressed files having the file extension .ogg, it
is common for the entire scheme to be simply called ogg. Like MP3, ogg supports varying bitrates, as
well as a varying number of channels of audio per file. This flexibility, along with the liberal license
and efficiency of its decoder, make ogg ideal for compressing music and longer tracks down to a more
manageable size.

Streaming Audio

These compressed file formats allow your games to come with 10s of hours worth of sound effects,
vocal tracks, and music, all at a reasonably small space requirement. However, remember that at
some point, the compressed data must be turned back into raw PCM data, for sending to the sound
card. The PCM data for a single music track in CD quality will take up around 80MB - that’s quite
a lot, especially for consoles or mobile devices! It’s therefore not feasible to store an entire track
in memory at once; but what we can do, is stream the data in as we need it. When playing back
audio, we will very nearly always be playing back the PCM data from its beginning to end, so once a
particular section of PCM data has been played, it doesn’t really need to be in memory at all! In fact,
we only need enough data from our PCM data stream to play back a short section at a time - the
length of this section is determined by how quickly the next section of data can be loaded from disk
and decompressed back into PCM data. If the section loaded up is too short, it may have finished
playing before the next section has been loaded and decoded, resulting in playback artefacts (sections
of sound repeating, pops and clicks, pauses in playback); conversely, if the section is too long, it will
be wasting memory.



The simplest way to handle the streaming of audio is to have a number of short buffers, instead
of one big buffer for your streamed audio. These buffers can then be filled up with some PCM audio
data, and sent to the sound hardware, one after the other, via a queue. Then, as each buffer is popped
off the queue, and it’s data ’consumed’ by the sound hardware, it can be filled up with new data for
the next section of the audio track, and popped back on the queue. Providing that the disk access
and audio decoding does not take too long, this will result in seamless, streamed playback of an audio
file of any size, without the large memory footprint.

Buffer 2 Buffer 1 Buffer 0
" Thursday I don't care "Tuesday's gray and " don't care if )
about you.." Wednesday too..." Monday's b,

Buffer 2 Buffer 1
“Thursday I don'’t care "Tuesdav's gray and )
about your..." Wednesday too..."

Unqueue

U

Buffer
"I don't care if
Monday's blue. "

Buffer 0 \ ©,
"L At Friday, min love” b
o\

L

B’ Buffer 2 Buffer 1
QI— eue "Thursday | don't cave Ij "Tuesday'’s gray and Ij )
ahout you,..” Wednesday oo,

An example of how three buffers could be used to seamlessly stream an audio file from a file. Top:

Three buffers are filled with PCM data from a song. Middle: As the contents of a buffer is sent to

the audio device, it is popped off the queue. Bottom: Popped off buffers can then be filled with more
PCM data and pushed back onto the queue.

Example Program

To round off our audio playback system, we’re going to add in the ability to playback streaming audio,
as well as triggering one-off sounds, such as the global sounds described earlier. To do so, we're going
to have to modify our SoundSystem, Sound, and SoundEmitter classes, as well as creating a new class
derived from Sound, OggSound - as its name implies, this will handle the decoding of audio data from
an Ogg Vorbis file.

SoundEmitter Class

To enhance our audio playback capability, we're going to add the ability for a SoundEmitter to play
a ’global’ sound, and be able to play back audio from a streaming file type - we're going to add
ogg capability later, but the SoundEmitter class changes will allow for any streaming file to be sup-
ported. Why do we need to change the SoundEmitter class to support streaming audio in our audio
system? Well, to use streaming audio, we’re going to use multiple buffers as described earlier, but
we can’t just add multiple buffers to the Sound class - multiple SoundEmitter might be streaming
audio from the same file, so they each need their own set of buffers to stream data from the Sound in to.



O 00 ~NO O WN -

[
(@]

© 00 ~NO O WN -

10
11
12
13
14
15
16
17
18
19
20
21
22

So, we need a few new public accessors and a protected variable to handle global playback, and
some protected variables to contain the stream position of a SoundEmitter, and the buffers it has
streamed data in to. We're using the define NUM_STREAM_BUFFERS to determine the length of
the buffer queue a SoundEmitter can support - 3 should be enough for a reasonably fast machine.

Header file
#define NUM_STREAM_BUFFERS 3 //Part 2
public:
bool GetIsGlobal () {return isGlobal;}
void SetIsGlobal (bool value) {isGlobal = value;}
protected:
bool isGlobal;
double streamPos;
ALuint streamBuffers [NUM_STREAM_BUFFERS] ;
SoundEmitter.h
Class file

Of course, as with other member variables, we should initialise our new variables to sensible defaults,
including setting our streamBuffers array to all 0 - which as you’ll remember, means 'no value’ to

OpenAL.

void SoundEmitter::Reset () {
.//VWe’re adding stuff to the existing constructor!!!
streamPos = 0;
isGlobal false;
for (unsigned int i = 0; i < NUM_STREAM_BUFFERS; ++i) {
streamBuffers[i] = 0;

}

SoundEmitter.cpp

When setting a new Sound on a SoundEmitter, we need to add in a little bit of logic to generate the
OpenAL buffers to stream the PCM data in to. There’s no point in always creating these buffers, as
not every SoundFEmitter will be playing streamed data, so instead we create them when a streaming
Sound is passed to a SoundEmitter, and destroy them when a non-streaming Sound is passed.

void SoundEmitter::SetSound (Sound *s) {
sound = s;
DetachSource () ;
if (sound) {
timeLeft = sound->GetLength();
if (sound->IsStreaming()) { //new bit!
alGenBuffers (NUM_STREAM_BUFFERS, streamBuffers);
+
elseq
alDeleteBuffers (NUM_STREAM_BUFFERS, streamBuffers);
+
}
}

SoundEmitter.cpp




23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58

We must also modify the AttachSource function, as we need to queue up a number of buffers-worth of
audio data every time we start playing a new streamed Sound. On line 37, we loop over the stream-
Buffers array of OpenAL buffers, buffering up streamed audio data from the current Sound, using
its StreamData function. To account for any slight differences in the amount of data we’re trying to
stream, and the amount actually streamed (due to the end of a Sound not filling up a buffer entirely,
for example), we keep track of the amount of audio data left to stream in the streamPos variable,
starting from timeLeft (line 35). On line 49, we queue up the newly filled OpenAL buffers on the
newly attached OpenAL source. Finally, if the Sound isn’t streamed, we just seek to the correct place
in the PCM data, as in the previous tutorial.

void SoundEmitter:: AttachSource (0ALSourcex*x s) {
oalSource = s;
if (' oalSource) {
return;
}
oalSource->inUse = true;
alSourceStop (oalSource->source) ;
alSourcef (oalSource->source, AL_MAX_DISTANCE, radius);
alSourcef (oalSource->source, AL_REFERENCE_DISTANCE, radius * 0.2f);
if (sound->IsStreaming ()) {
streamPos = timeleft; //Seeks to correct position in stream
int numBuffered = 0; //How many buffers have we filled?
while (numBuffered < NUM_STREAM_BUFFERS) {
double streamed = //Stream in some more data
sound->StreamData (streamBuffers [numBuffered] ,streamPos);
if (streamed) {
streamPos -= streamed;
++numBuffered; //Filled another buffer!
}
elseq
break; //Can’t fill any more buffers...
}
}
alSourceQueueBuffers (oalSource->source, numBuffered,
&streamBuffers [0]); //Queue up buffers
}
elseq
alSourcei (oalSource->source , AL_BUFFER, sound->GetBuffer ()) ;
alSourcef (oalSource->source , AL_SEC_OFFSET,
(sound->GetLength ()/ 1000.0) - (timeLeft / 1000.0));
}
alSourcePlay (oalSource->source) ;
}

SoundEmitter.cpp

When we detach one of OpenAL’s sources from a SoundEmitter, we need to make sure it’s not going to
keep playing any audio data - to do so, we unqueue any queued buffers on the source, undoing the effect
of attaching a source to a SoundEmitter. We can query how many buffers the source has gotten through
using the AL_BUFFERS_PROCESED named constant, and then using the alSource UnqueueBuffers
function to unqueue them, before disabling the sound by setting 0 as the current buffer.




59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

void SoundEmitter::DetachSource () {
...//start of function up here
alSourceStop (oalSource ->source) ;

if (sound && sound->IsStreaming()) { //Part 2
int numProcessed = O0;
ALuint tempBuffer;
alGetSourcei (oalSource->source , AL_BUFFERS_PROCESSED ,&numProcessed) ;
while ( numProcessed-- ) {
alSourceUnqueueBuffers( oalSource->source, 1, &tempBuffer );
}
}
alSourcei (oalSource->source , AL_BUFFER,0) ;
...//rest of function down here!
+

SoundEmitter.cpp

Lastly, we must refactor the UpdateSoundState function. To handle global sounds with as little re-
coding as possible, we’re going to simply set the attached OpenAL source’s position to be the same as
the SoundSystem’s listener - this will make it play at maximum volume, and also make sure the node
always passed the distance check when culling nodes. If it’s not playing a global sound, the source’s
position is updated as normal, to that of the SoundEmitter.

void SoundEmitter::UpdateSoundState (float msec) {
...//Start of function up here
Vector3 pos;
if (GetIsGlobal ) {
pos = SoundSystem::GetSoundSystem()->
GetListenerTransform().GetPositionVector () ;
}
elseq{
if (target) {
pos = target->GetWorldTransform().GetPositionVector ();
}
else {
pos = this->position;
3
}
alSourcefv (oalSource->source , AL_POSITION, (float*)&pos) ;

SoundEmitter.cpp

With global playback sorted, we must also add in streaming audio updates. If the current Sound
is streaming audio, we must see if we need to unqueue or enqueue any more audio buffers. We do so
using the AL_BUFFERS_PROCESED named constant in conjunction with the alGetSourcei function
again, which returns how many of its queued buffers have been played. On line 95 onwards, we loop
over the number of processed buffers, streaming new data into them, and enqueueing them back to
the source. The alSource UnqueueBuffers function places the name of the processed buffer in the free-
Buffer local variable, which we can then reuse in the alSourceQueueBuffers function call. As there’s
the possibility of reaching the end of a streamed file during this process, on line 103 we check for the
streamed data running out of audio, and loop back round to the start of the file if the SoundEmitter
is expected to loop its audio.

You may notice that in this refactored function, we only set the AL_LOOPING parameter to true if
the Sound is not a streaming type - if an OpenAL source with no more buffers left to process has
looping set, it will start playing its last buffer again! To prevent this, we don’t use OpenAL’s looping
capability - the audio will still loop due to how we manually loop the streamPos and timeLeft variables.




90
91

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

D O WN -

g W N

if (sound->IsStreaming ()) <{

int numProcessed;
alGetSourcei (oalSource->source , AL_BUFFERS_PROCESSED ,&numProcessed) ;
alSourcei ( oalSource ->source , AL_LOOPING ,0);
while (numProcessed--) {
ALuint freeBuffer;
//Pop off the buffer
alSourceUnqueueBuffers (oalSource->source, 1, &freeBuffer);
streamPos -= sound->StreamData(freeBuffer ,streamPos);
alSourceQueueBuffers (oalSource->source, 1, &freeBuffer);
if (streamPos < 0 && isLooping) {
streamPos += sound->GetLength () ;
}
¥
}
elseq{
alSourcei (oalSource->source ,AL_LOOPING ,isLooping 7 1 : 0);
}
...//end of function down here

SoundEmitter.cpp

Sound Class
Header file

To support our new sound streaming capability, we need to modify the Sound class. The function
IsStreaming, coupled with a new member variable, streaming, determines whether an instance of a
Sound is being read from memory or disk, while the virtual function StreamData will perform the
data streaming. In this basic implementation, streaming of the basic Sound class doesn’t do anything,
but there’s no reason why you couldn’t stream data from a large WAV file.

public:

bool IsStreaming () {return streaming;}

virtual double StreamData(ALuint buffer, double timeLeft){

return 0.0f;}

protected:

bool streaming;

Sound.h

Class file

In the constructor, we need to initialise the streaming variable - most sounds will probably be a
small amount of raw PCM data, and so will not be streamed, so false should be the default.

#include "OggSound.h" //8o that AddSound works!
Sound: :Sound () {

streaming = false;

//Rest of constructor goes here!
}

Sound.cpp




© 00 N O®

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

SoundManager Class

The AddSound function in our SoundManager needs changing, too. We need to add in support for
the ogg file format, so just as we checked for the WAV extension in the previous tutorial, we now check
for the OGG extension, to. If the sound to be added is in ogg format, we create a new OggSound, and
add that to the static sounds map.

void SoundManager::AddSound(string name) {
Sound *s = GetSound(name);
if (1s) {
string extension = name.substr (name.length()-3,3);
if (extension == "wav") {
s = new Sound();
s->LoadFromWAV (name) ;
alGenBuffers (1,&s->buffer);
alBufferData(s->buffer ,s->Get0OALFormat () ,s->GetData (),
s->GetSize () ,(ALsizei)s->GetFrequency ()) ;
+
else if (extension == "ogg") {
OggSound* ogg = new 0OggSound();
ogg->LoadFromOgg (name) ;
s = ogg;
+
elseq
s = NULL;
cout << "Incompatible file extension ’" << extension
<< "2 1" << endl;
+
sounds . insert (make_pair (name, s));
}
}

Sound.cpp

OggSound Class

Header file

Now for the new stuff! The OggSound class deals with the streaming of data from the ogg vorbis file
format. It does so via two external libraries - libogg to handle the ogg file structure, and libvorbis to
handle the data within that structure. So, we need to add includes to the OggSound header file to
enable access to these libraries. We also create a new define, BUFFERLENGTH, which will determine
the size in bytes of the PCM data each of the OpenAL buffers used to stream the data will contain.

As for the actual class itself, it has two public functions: LoadFromQgg, which handles the initialis-
ing of an ogg file, and is called by the Sound::AddSound function, and an overridden StreamData
function, which will fill an OpenAL buffer up with some PCM data decoded from the ogg stream.
To keep track of the ogg stream, we need a couple of protected member variables, fileHandle and
streamHandle. The fileHandle variable contains the information relating to the ogg file itself - the ogg
vorbis libraries are written in pure C, and so do not support the more modern C++ filestream data
types, so we must keep track of the file using the C equivalent, FILE. The streamHandle variable
keeps track of the actual sound data being pulled out of the ogg file, and is a datatype defined by the
ogg vorbis libraries.




© 00 ~NO O WN -

NNFRP,P PP RPR PR PR PP
= O O 00 ~NOOLdbd WNN = O

DO WN -

© 00 N

10

12

#pragma once

#include "sound.h"

#include <ogg/ogg.h>

#include <vorbis/codec.h>
#include <vorbis/vorbisenc.h>
#include <vorbis/vorbisfile.h>

#define BUFFERLENGTH 32768

class 0OggSound : public Sound {
public:

OggSound (void) ;

virtual ~“0OggSound(void);

void LoadFromOgg(string filename);

virtual double StreamData (ALuint buffer, double timelLeft);
protected:

FILE=* fileHandle;

OggVorbis_File streamHandle;
s

OggSound.h

Class File

Our constructor is simple, it just initialises the fileHandle and streaming variables. You could decode
an entire ogg file at once, but as with the Sound class, extending this functionality is left up to you!.

#include "OggSound.h"

OggSound: :0ggSound (void) {
streaming = true;
fileHandle = NULL;

OggSound.cpp

The destructor is also pretty simple - it closes the ogg file being streamed from (using the C
function fclose), and clears up the ogg stream information, using the library function ov_clear. All
ogg vorbis functions are named using the og_ prefix, making them quite easy to spot.

OggSound ::~0ggSound (void) {
if (fileHandle) {
ov_clear (&streamHandle) ;
fclose(fileHandle) ;
}
+

OggSound.cpp

When we open up an ogg file via the SoundManager::AddSound function, the following LoadFro-
mQOgg function is called. First off, on line 14, the C FILFE is opened, using the C function fopen,
which takes a char pointer as a filename, and a char array tag - we’re using rb, as we’re going to
read binary data. Assuming the file exists, we then fill the streamHandle struct variable, using the
ov_open library function, which as you might expect, extracts the stream information from the newly
opened FILE. From this stream information, we can extract a wvorbis_info struct, which contains




13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42

information relating to the channel count and frequency rate of the compressed vorbis data, and also
the audio length, via the ov_time_total function which returns the number of seconds the audio lasts
for. Finally, we seek to the start of the audio stream using the ov_time_seek function, so we can begin
to stream audio out of it.

void OggSound::LoadFromOgg(string filename) {
fileHandle = fopen(filename.c_str(), "rb");
if (' fileHandle) {
cout << "Failed to load 0GG file ’" << filename << "’!1" <K< endl;
return;
}
if (ov_open(fileHandle, &streamHandle, NULL, 0) < 0) {
cout << "Failed to get O0GG stream handle!" << endl;
return;
}
vorbis_info* vorbisInfo = ov_info(&streamHandle, -1);
bitRate = 16; //For now!
channels = vorbisInfo->channels;
freqRate = (float)vorbisInfo->rate;
length = (float)ov_time_total (¥streamHandle ,-1) * 1000.0f;
ov_time_seek (&4streamHandle, O0);
}

OggSound.cpp

The last function in the OggSound class is also the most important - StreamData. It’s pretty compli-
cated, to, and so will take a little bit of explaining. Whenever StreamData is called, it will attempt to
stream in some amount of audio data into the OpenAL buffer parameter, starting from the point in
the audio stream where there are a number of milliseconds left equal to the second parameter. So, on
line 39, we again use the ov_time_seek function, to move the stream position to the correct place. If
this seek process fails, denoted with a seek parameter value of less than 0, we "loop around’ the audio
stream by adding its length, and trying to stream again. This can happen when queuing up multiple
buffers near the end of the file - if one buffer reaches the end of the audio data, the next buffer will
have a negative timeLeft parameter, so this must be accounted for.

double OggSound :: StreamData (ALuint buffer, double timeLeft) {
char data [BUFFERLENGTH] ;
int read = 0;
int readResult = 0;
int section;
int seek = ov_time_seek(&streamHandle,(length - timelLeft)/1000.0);
if (seek != 0) {

return StreamData(buffer,timeleft + GetLength());
}

OggSound.cpp

On line 45, we begin the process of actually streaming in some data, which we place in the tempo-
rary variable data, defined on line 34. While we haven’t filled up the data array, we read some data
from the vorbis stream, using the ov_read function. This function takes a number of parameters - the
streamHandle, a pointer to the destination of the decoded data, how much data to decode, and some
parameters that control the data type of the stream, which we will leave at their default values. The
while loop will move along the data local variable, filling it up with decoded PCM data until it is
full, or no more PCM data can be read, before breaking out of the loop.

10




43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

O ~NO O WN -

With the data (hopefully!) read into the data variable, it can be buffered into the OpenAL buffer
just like we did with the WAV PCM data last tutorial - using the alBufferData function. We then
return the number of milliseconds of PCM data we actually decoded, so we know where to seek to
in the stream next time we try to stream some data for a particular SceneNode.

while(read < BUFFERLENGTH) A{
readResult = ov_read(&streamHandle, data + read,
BUFFERLENGTH - read, O, 2, 1, & section);
if (readResult > 0) {
read += readResult;
}
else {
break;
+
}
if (read > 0) {
alBufferData(buffer, GetOALFormat (), data,
read, (ALsizei)GetFrequency());
}
return (float)read/(channels*freqRatex(bitRate / 8.0))*1000.0f;
}

OggSound.cpp

SoundSystem Class
Header file

To enable the triggering of sounds arbitrarily in our game code, we need to modify the SoundSystem
class slightly. We need a couple of new public functions - both called PlaySound, and enable the
triggering the playback of a sound either globally or in 3D space, a protected function to update
them, and a protected vector to store them in.

struct SoundPriority;
public:

void PlaySound (Sound* s, Vector3 position);

void PlaySound (Sound* s, SoundPriority p = SOUNDPRIORTY_LOW);
protected:

void UpdateTemporaryEmitters (float msec);

vector <SoundEmitter*> temporaryEmitters;

SoundSystem.h

Class file

Every time our SoundSystem updates, we should also update the temporary ’triggered’ emitters un-
der its control, so we need to add a call to the new Update TemporaryEmitters function in the Update
function - everything else in the Update function can remain as-is.

void SoundSystem::Update (float msec) {
UpdateTemporaryEmitters (msec); //Add this line!

SoundSystem.cpp

11




© 00 N O O

10

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

O ~NO O WN -

To perform the actual temporary emitter updating, we need to iterate over the temporaryEmitters
vector, and either call the SoundEmitter’s Update function and add it to the frameFEmitters vector
for process by the CullNodes function, or delete the SoundFEmitter if it has finished its sound playback.

void SoundSystem::UpdateTemporaryEmitters(float msec) {
for (vector<SoundEmitter*>::iterator i = temporaryEmitters.begin();
i != temporaryEmitters.end(); ) {
if ((*i)->GetTimeLeft () < 0.0f && !'(*i)->GetLooping()) {
delete (*i);
i = temporaryEmitters.erase(i);
}
elseq{
frameEmitters.push_back ((*x1i));
(¥xi)->Update (msec);
++1 ;
}
}
X

SoundSystem.cpp

The last thing we need to do to improve our SoundSystem class is to create a couple of PlaySound
functions - one for a global sound (such as GUI audio feedback), and one for a temporary sound
in 3D space (such as an explosion). Both functions create a new SoundEmitter, add it to the tem-
poraryEmitters vector, and use its accessor functions to set the appropriate state. That’s it! Your
audio system should now be good to go, and be capable of playing a variety of sounds in different ways.

void SoundSystem::PlaySound(Sound* s, Vector3 position) {
SoundEmitter* n = new SoundEmitter ();
n->SetLooping(false);
n->SetTransform (Matrix4:: Translation(position));
n->SetSound (s) ;
temporaryEmitters.push_back(n);

}

void SoundSystem::PlaySound(Sound* s, SoundPriority p) {
SoundEmitter* n = new SoundEmitter ();
n->SetLooping (false);
n->SetSound (s) ;
n->SetIsGlobal (true);
n->SetPriority (p);
temporaryEmitters.push_back(n);

}

SoundSystem.cpp

To test the ability to trigger sound effects, we're also going to add a couple of if statements to
the UpdateGame function of the MyGame class: one to trigger a global sound, and one to trigger a
sound playing at the origin:

if (Window::GetKeyboard () ->KeyTriggered (KEYBOARD_1)) {
SoundSystem::GetSoundSystem () ->PlaySound (
SoundManager :: GetSound (soundNames [1]) , SOUNDPRIORITY_HIGH) ;
}
if (Window::GetKeyboard () ->KeyTriggered (KEYBOARD_2)) {
SoundSystem::GetSoundSystem () ->PlaySound (
SoundManager ::GetSound (soundNames [2]), Vector3());

main.cpp

12




Tutorial Summary

That turned out to be quite a lot of code, didn’t it! But, in adding it all to your game engine, you've
learnt a little bit about how to efficiently stream in audio data, how to handle external libraries
written in C, and made your sound playback more general purpose. That’s everything for this short
sound workshop series, but what you’ve learnt is by no means everything there is to know about game
sound programming. We’ve not discussed environmental effects such as reverb, how to use equalisers
to change the treble and bass of played back audio, or the important subject of audio occlusion - how
the surfaces of a game level block the propagation of sound. The implementation of some of these
things will be audio API specific, while others can be made general purpose. So, don’t feel like you’ve
been spoiled too much by being given a working audio system - there’s a whole load of things you can
research into to make your game’s audio playback system unique!

Further Work

1) Try adding in the ability to load an entire Ogg file into one buffer, and stream an uncompressed
WAV. Loading an entire ogg may sound counter-intuitive, but remember it may not just be a music
track that is compressed - Ogg Vorbis is just as useful for small sounds like spot effects, too!

2) As well as audio output, OpenAL provides a system for receiving audio input from a connected
microphone. Investigate the alCaptureOpenDevice and alcCaptureStart functions.

3) OpenAL supports the ability to add special effects such as reverb to a source, via the Effects Ex-

tension system. Read the Effects Extension Guide document contained in the OpenAL SDK folder,
and try adding a simple reverb to a source.

13



